Research from our center shows women and elderly at higher risk of dangerous drug interactions

A new study led by researchers in our center has found that women and older adults who use multiple prescription drugs are significantly more likely to be prescribed pills whose combination produces dangerous side effects.

The analysis, conducted in the Brazilian health care system and recently published in the journal npj Digital Medicine, revealed a 60 percent increased risk for adverse drug reaction in women compared to men — and a 90 percent increased risk in cases of medicines whose interaction is known to produce dangerous reactions. In older people, one in every four people prescribed multiple medicines over age 55 received drugs with an interaction — reaching one in every three for ages 70 to 79.… continue reading.

Congratulations to Dr. Rion Brattig Correia!

Luis Rocha and Rion Brattig Correia

Congratulations to Rion Correia, who successfully defended his PhD dissertation on Prediction of Drug Interaction and Adverse Reactions, with data from Electronic Health Records, Clinical Reporting, Scientific Literature, and Social Media, using Complexity Science Methods. Dr. Correia’s research used network science, machine learning, and data science to uncover population-level associations of drugs and symptoms, useful for public health surveillance. His findings show that Social Media (Instagram and Twitter) and Electronic Health Records of an entire city in Southern Brazil, are very useful to reveal how the Drug interaction phenomenon varies across distinct groups. For instance, he identifying gender biases and specific communities of interest in chronic disease (e.g. Epilepsy and Depression). In addition to Complex Networks and Systems, his dissertation contributes to the fields of biomedical informatics and precision public health by leveraging heterogeneous data sources at multiple levels to understand population and individual pharmacology differences and other public health problems.… continue reading.

Luis Rocha and other School of Informatics, Computing and Engineering faculty receive Research Recognition Awards

Luis Rocha, Katy Borner, Paul Macklin and other faculty from the School of Informatics, Computing and Engineering (SICE) were the awardees of the 2019 SICE Research Awards. Luis Rocha received the award in recognition of the NSF Research Traineeship (NRT) on Complex Networks and Systems and two NIH NLM R01 grants. The awards were handed by SICE Dean Raj Acharya and Associate Dean for Research Kay Connelly.

continue reading.

AI, Society and Organizations

On the 7th of March 2019, CNETS Professor Luis Rocha will participate in a panel organized by Nova SBE’s Executive Education, Instituto Gulbenkian da Ciência and ISI Foundation with the theme of AI, society and organisations: experiences from applied projects in governments, companies and NGO’s, where the role of data science in today’s world will be discussed.

Other guest speakers, include Rayid Ghani, director of the Center for Data Science and Public Policy in the University of Chicago, founder of the Data Science for Social Good fellowship and Chief Scientist at the Obama for America 2012, Daniela Paolotti, Ciro Cattuto, Joana Gonçalves-Sá and Leid Zejnilovic.… continue reading.

Charting interdisciplinary research opportunities between data and life sciences

CNetS Professor Luis Rocha, together with ISI foundation (ISI) scientist Ciro Cattuto organize a workshop with the Instituto Gulbenkian de Ciencia to explore synergies between data/computational science and the life, health and social sciences. More information on the workshop event page.… continue reading.

Bollen social media study shows how affect labeling can help moderate emotions

Your mother always told you that if something was bothering you, you should talk about it. It would make you feel better. Turns out she was right, and researchers at the School of Informatics, Computing, and Engineering have the science to prove it. Johan Bollen, a professor of informatics and computing, leads a team that analyzed the Twitter feeds of tens of thousands of users to study how emotions change before and after they were explicitly stated. In the study, “The minute-scale dynamics of online emotions reveal the effects of affect labeling,” published in the journal Nature Human Behaviour, Bollen and his colleagues used algorithms to measure how the positivity or negativity of tweets change before or after a user explicitly expressed having an emotion, e.g. saying “I feel bad” or “I feel good.” Their study not only reveals how emotions evolve over time, but also how their expression may change them, and how these changes differ between men and women.… continue reading.